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ABSTRACT
In various real-world image enhancement applications, the degra-
dations are always non-uniform or non-homogeneous and diverse,
which challenges most deep networks with fixed parameters during
the inference phase. Inspired by the dynamic deep networks that
adapt the model structures or parameters conditioned on the inputs,
we propose a DCP-guided hierarchical dynamic mechanism for im-
age enhancement to adapt the model parameters and features from
local to global as well as to keep spatial adjacency within the region.
Specifically, channel-spatial-level, structure-level, and region-level
dynamic components are sequentially applied. Channel-spatial-
level dynamics obtain channel- and spatial-wise representation
variations, and structure-level dynamics enable modeling geomet-
ric transformations and augment sampling locations for the varying
local features to better describe the structures. In addition, a novel
region-level dynamic is proposed to generate spatially continu-
ous masks for dynamic features which capitalizes on the Dark
Channel Priors (DCP). The proposed region-level dynamics benefit
from exploiting the statistical differences between distorted and
undistorted images. Moreover, the DCP-guided region generations
are inherently spatial coherent which facilitates capturing local
coherence of the images. The proposed method achieves state-of-
the-art performance and generates visually pleasing images for
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multiple enhancement tasks, i.e., image dehazing, image derain-
ing and low-light image enhancement. The codes are available at
https://github.com/DongLiangSXU/HDM.
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1 INTRODUCTION
Image enhancement is a classic low-level computer vision problem
with high practical values, which has attracted lots of attentions
from the communities. Various kinds of degradations exist in the
low-quality images, dues to adverse imaging conditions, such as
fog, rain, or low light, which are quite diverse and hard to describe
by a universal physical model. Multiple priors and skillfully hand-
crafted features are exploited to alleviate the ill-posedness of the
image enhancement problems [3, 14, 36, 37]. He et al. [14] proposed
the dark channel prior (DCP) for image dehazing. Unfortunately,
although handcrafted methods have achieved satisfying results for
specific pictures, the priors are easily violated in real applications.

With rapid developments of deep learning, convolutional neu-
ral networks (CNN) based dehazing methods have largely boosted
the performances of the area [10, 23, 26]. Standard convolutional
filters are shared across the spatial domain, producing responses
to specific structures or features since some local structures re-
peatedly appear within a single image or across many pictures. A
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(a) Input (b) Dark channel values (c) Dynamic region masks

Figure 1: Hazy, rainy and low-light images and the corre-
sponding dark channel values as well as the DCP-guided re-
gion masks by our method.

tremendous number of filters are exploited in deep models to re-
cover the potential structures in the target images. However, most
of the current deep models perform inference in a static manner
and fix the parameters for different inputs, which severely limits
the further improvement of model performances. On the other
hand, the degradations or adverse imaging conditions are always
non-homogeneous or non-uniform, whether it is fog or rain or low
light. In these static manners, diverse degraded images or nonhomo-
geneous areas in low-quality images are processed with the same
filters from a trained deep model, which inevitably lacks representa-
tion power conditioned on various inputs and leads to some failure
cases.

To further improve the representation ability of the deep mod-
els, dynamic networks [13] that adapt the model structures or pa-
rameters during inferences have recently aroused lots of interests
from communities [5, 6, 17, 28]. The dynamic models have great
potentials to restore clear images according to different areas of
nonuniform low-quality inputs. Typical examples are attention
mechanisms which are widely applied for image enhancement
tasks [23, 26, 32], where attention weights are calculated to focus
the important part of the input, for example, adapting parameters
individually for each pixel. However, adapting parameters individ-
ually for each pixel may ignore the local coherence of the images
and lose the translation invariance of the convolutional operations.
To solve this problem, Dynamic Region-Aware Convolution [5] is
proposed to assign multiple convolutional filters to different regions
separately and share the same filters in each region, which obtains
great performance gain. Nevertheless, the ‘Region’ defined in [5]
has no direct connotations for spatial adjacency but shares simi-
larities in high dimensional feature spaces captured by the guided
mask separations.

It is quite challenging that the region generation for the enhance-
ment process should consider the semantic information and the
degradations. Intuitively, the regions are a group of connected pixels
with similar properties which should have spatial adjacency within

the regions. Modeling spatial adjacency of the region-level dynam-
ics for local coherence is still absent. Thus, balancing representation
ability and modeling local coherence remains an important issue
for developing a dynamic model. Moreover, how to develop and
combine dynamic techniques for better performance still needs to
be explored.

To face these challenges, a hierarchical dynamic mechanism
(HDM) with spatial adjacency is proposed for image enhancements,
which hierarchically adapts the parameters and features of the
model channel-spatial-wise, structure-wise, and region-wise from
local to global. The channel-spatial-level dynamics are built by the
attention model, which enable channel-wise and spatial-wise vari-
ations for representations and obtain the finest dynamics for the
input. The structure-level dynamics apply deformable convolutions
[6] to model geometric transformations and augment sampling
locations for describing the structures. The region-level dynamics
propose to generate spatial connected region masks which apply
different filters to different regions adaptively and keep translation-
invariance property in each region. Dark Channel Priors(DCP) [14]
are revisited to measure the degradation degrees of regions to gener-
ate the DCP-guided region-level dynamic masks, which inherently
generate local coherent regions where the pixels are spatially con-
nected. Instead of simultaneously learning filters and guided masks,
the DCP-guided region-level dynamic masks are generated without
learning which is more efficient and enables better optimizations
for filters. For hazy images, our DCP-guided region-level dynamics
may exploit the depth information for better dynamic region gener-
ations as DCP priors relates to depth information. In Fig. 1, the dark
channel values clearly reflect a grouping of the local pixels which
leads to a good separation of regions for region-level dynamics.
The dcp-guided region separations are consistent with separations
according to the semantic and degradation information. The core of
the proposed hierarchical dynamic mechanism is the local to global
philosophy. The pixel ranges of the input involved in determining
the output dynamic features or dynamic parameters are gradually
enlarged, that is, from local to global. The components in each
dynamic level can evolve as the techniques of the dynamic model
develops. Performances are obviously dropped by different cascad-
ing orders of the same dynamic components, which demonstrate
the importance of the local to global philosophy.

Our framework has achieved state-of-the-art performances with
a relatively small parameter number and restored visually pleasing
clear images for different image enhancement tasks. It could be
further improved when specialized techniques or loss functions for
certain degradation are combined. In addition, our models trained
by different types of degraded training images could be combined
to better solve the real degraded images, such as applying deraining
and dehazingmodels to real rainy imageswhere both rainy and hazy
degradations exist. To summarize, our paper makes the following
main contributions,

a) A hierarchical dynamic mechanism (HDM) is proposed to
gradually adapt the model parameters and build local and global
dynamics. The channel-spatial-level dynamics enable channel-wise
and spatial-wise representation variations. The structure-level dy-
namics enable modeling geometric transformations and augment-
ing sampling locations for varied local features to better describe
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Figure 2: The architecture of the deep model with the proposed DCP-guided hierarchical dynamic mechanism (HDM). Only a
rainy image is applied to illustrate the dynamic region mask generation due to the space limitation.

the structures. Finally, the region-level dynamics integrate the
structure-level dynamic features and obtain better local coherence.

b) A DCP-guided region-level dynamic component is designed
to measure the degradation degrees according to DCP priors and
provides spatial adjacency within the region, facilitating local co-
herence for the images much more efficiently.

c) The proposed DCP-guided hierarchical dynamics demonstrate
the state-of-the-art performances for different image enhancement
tasks, i.e., dehazing, deraining and low-light image enhancement.

2 RELATEDWORK
Generally, the existing image enhancement methods can be classi-
fied into learning-based [9, 17, 25, 34, 52] and non-learning-based
image enhancement methods [3, 14, 36, 37]. For deep learning based
image enhancement methods, dynamic models have demonstrated
obvious improvements over static deep models and have been a hot
topic in the last few years. Dai et al.[6] introduced deformable con-
volutions and deformable ROI pooling for detections and semantic
segmentations to enhance the geometric transformation modeling
capability of deep models. Qin et al.[32] applied channel and spatial
attentions as well as feature attention modules for image dehaz-
ing, which brought large improvements. Essentially, the dynamic
models generate or re-weight the parameters or features of the
inference models conditioned on inputs, which has dramatically
expanded the parameter spaces and increased the model capacities
as well as the representation ability.

Dynamic Region-Aware Convolution (DRConv) [5] achieves
state-of-the-art performances on classification, face recognition, de-
tection, and segmentation tasks. DRConv applies masks to separate
regions, enables weight sharing within the separate regions, and
captures similarities in high dimensional feature spaces. The mask
𝑀𝑎 can be learned from the input deep feature 𝐹 𝑖𝑛

𝑅
. In specific, if N

regions are separated, N groups of filters would be generated and
applied to calculate N groups of feature maps 𝑓𝑖 (𝑖 = 1, ..., 𝑁 ). Then
these N groups of guided masks are calculated as

𝑀𝑖
𝑎 (𝑥) = 𝛿 (𝑖 == 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑓1 (𝑥), ..., 𝑓𝑖 (𝑥), ...𝑓𝑁 (𝑥))), (1)

where 𝛿 is an indicator function. The resulted guided masks are
the N groups of the one-hot feature maps. To enable the end-to-
end learning for the mask generations, the softmax operation is

exploited during the error propagation process resulting a very
dispersive or sparse mask set. The region dynamic features can
be calculated as multiplications of guided masks𝑀𝑎 and the input
deep features 𝐹𝑎 . However, spatial adjacency is not involved in this
work and region-level dynamics remain open issues.

2.1 The Dark Channel Prior (DCP)
DCP [14] is a famous handcrafted dehazing method by which the
transmission map can be easily estimated. He et al.[14] statistically
found the minimum values of rgb channel for each pixel form a
dark channel, which should approximate zero for the hazy-free
images. The dark channel can be calculated as:

𝐽𝑑𝑎𝑟𝑘 = 𝑚𝑖𝑛
𝑐∈{𝑟,𝑔,𝑏 }

(𝐽𝑐 ), (2)

where 𝐽𝑐 is the c channel of hazy-free images 𝐽 . Thus, the dark
channel prior is violated if the dark channel intensity is greater than
a threshold. The DCP priors are mainly utilized in the dehazing
problem. In fact, the DCP priors hold for the targeted enhancement
results of ideal image quality. In this paper, DCP priors are exploited
for universal image enhancement problems and the dark channel
intensities are grouped to form region masks for dynamic models.

3 OUR APPROACH
Real-world low-quality images are always nonhomogeneous and
diverse but with local coherence. A hierarchical dynamic mecha-
nism (HDM) that enables feature dynamics from local to global is
proposed, which gradually builds channel-spatial-wise, structure-
wise, and region-wise dynamics. An encoder-decoder deep model
is applied with the proposed hierarchical dynamic mechanism. As
shown in Fig. 2, the proposed model first applies conventional
convolutions to downsample the images, and then the proposed hi-
erarchical dynamic components are utilized to enhance the feature
mapping process. Finally, our model employs deconvolutions to
upsample the extracted feature maps to the original size and uses
additional conventional convolutions to alleviate the aliasing effect.
The number of filter channels is fixed as 64 in the whole network,
which is a relatively small feature number compared with recent
enhancement networks [7, 32]. All the activation functions apply
the ReLU function. In addition, the L1 loss and perceptual loss are
applied in our implementations.
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The downsampling process utilizes two stride convolution lay-
ers with a stride of 2 to downscale the feature map to quarter size.
The downsampling process largely reduces the computational bur-
dens for the following feature mapping, especially the hierarchical
dynamic feature mapping process. Instead of feature concatena-
tions like U-Net [35] or feature summations like residual networks
[15], the adaptive Mixup operations [41] are integrated to enable
information flow from downsampling layers to upsampling layers.

The hierarchical dynamic blocks consist of channel-spatial-level,
structure-level and region-level dynamic components sequentially.
The region-level dynamics are achieved by generating a DCP-
guided mask from DCP priors and then applying each mask sepa-
rately to the extracted features. The generated DCP-guided dynamic
masks inherently impose spatial coherence constraints for dynamic
region generations and benefit from the spatial adjacency within
the regions to better capture the information. As DCP priors could
be applied to calculate the transmission map for image dehazing
problem, the generated mask may exploit the inner relationship
between image enhancement and depth.

3.1 Channel-Spatial-Level Dynamics
The degradation is nonhomogeneous which should be adaptively re-
covered across spatial domains. Moreover, as demonstrated by [14],
the distributions of pixel values in each channel of the degraded
images are different which should be treated differently. Inspired
by [32], channel attention and spatial attention are cascaded in
our model to adapt the feature map channel-wise and spatial-wise
which generate channel-spatial-level dynamics as Eq. (3) and Eq. (4).
For channel-level dynamics,

𝑊𝑐 = 𝜎 (𝐶𝑜𝑛𝑣 (𝑅𝑒𝐿𝑈 (𝐶𝑜𝑛𝑣 (𝐺𝐴𝑃 (𝐹𝑐𝑖𝑛))))),
𝐹𝑐𝑜𝑢𝑡 = 𝐹𝑐𝑖𝑛 ⊗𝑊𝑐

(3)

where ⊗ stands for the element-wise multiplication, 𝐹𝑐
𝑖𝑛

denotes
the input for the channel attention component and𝑊𝑐 denotes the
attention weights calculated for the different channels. Sigmoid
function 𝜎 , convolution operation 𝐶𝑜𝑛𝑣 and ReLU function are
applied after a global average pooling function (GAP) for each
channel of input feature 𝐹𝑐

𝑖𝑛
.

For spatial-level dynamics, the feature can be adapted as:

𝐹
𝑠𝑝
𝑜𝑢𝑡 = 𝐹

𝑠𝑝

𝑖𝑛
⊗ 𝜎 (𝐶𝑜𝑛𝑣 (𝑅𝑒𝐿𝑈 (𝐶𝑜𝑛𝑣 (𝐹𝑠𝑝

𝑖𝑛
)))), (4)

where 𝐹𝑠𝑝
𝑖𝑛

is the input for the spatial attention component which
equals 𝐹𝑐𝑜𝑢𝑡 . The channel-spatial-level dynamics enable features in
different channels and different spatial locations varied adaptively,
which could extract the pixel varied features conditioned on the
input and achieve greater representation power.

3.2 Structure-Level Dynamics
The focus of the channel-spatial-level dynamics is mainly limited
to the pixels individually which loses the translational invariance.
Pixel varied features are not good at modeling large irregular varia-
tions for the input, especially for the distorted images. To benefit
from the local coherence of structures as well as increasing the
representation power for geometric transformations, deformable
convolutions are applied right after channel-spatial-level dynamic
components to better capture the features of local structures. The

calculated channel-spatial-level dynamic features 𝐹𝑠𝑝𝑜𝑢𝑡 are fed into
the structure-level dynamic component. The regular sampling grid
of the conventional convolution is replaced by a calculated sam-
pling offset. The calculation of the deformable convolution can be
expressed as

𝐹𝑜𝑢𝑡𝑠 (𝑥) =
∑
𝑥𝑛 ∈𝐺

𝑊𝑠 (𝑥𝑛) · 𝐹 𝑖𝑛𝑠 (𝑥 + 𝑥𝑛 + △𝑥), (5)

where𝑊𝑠 (𝑥𝑛) are the wights, G is the traditional regular sampling
grid, 𝑥𝑛 is the regular sampling points and △𝑥 is the calculated sam-
pling offset, 𝐹 𝑖𝑛𝑠 and 𝐹𝑜𝑢𝑡𝑠 denote the input of the operations and the
calculated structure-level dynamic features respectively. The spatial
sampling locations are largely augmented from the learning of the
restoration task which can better represent the features for the
irregular structures. After the structure-level dynamic components,
the focus of the features is obviously enlarged.

3.3 Region-Level Dynamics
The structure-level dynamics mainly focus on local structures as the
irregular sampling offsets of deformable convolutions are still lim-
ited to local structure areas. To better integrate the local information
for modeling the local coherence, region-level dynamic components
are cascaded after structure-level dynamic components.

The region-level dynamics mean to apply different convolution
filters according to the different input regions. The region separa-
tion is accomplished by an efficient DCP-guided mask generation.
The corresponding filters for each region are generated by a filter
generation network, which are applied for the corresponding input
features according to the generated masks based on DCP priors.

Dynamic region masks are groups of the one-hot feature maps
that spatially indicate which pixel belongs to which region. The
mask is generated according to a grouping of normalized dark chan-
nel values ([0, 1]) as Fig.2. N (𝑁 = 5) equally spaced intervals are
applied to decide the separation of the regions. As the intensities
of the dark channel for an ideal high-quality image should approx-
imate zeros, the intensity deviations from the zeros in the dark
channel could reflect the degradation-degrees for the low-quality
images. DCP priors are priors to describe statistical properties of
images with ideal image qualities although the DCP priors are
mainly applied in the image dehazing problems. In the implementa-
tions, as the soft matting step applied by the DCP method is quite
time-consuming, the soft matting step is abandoned.

For efficiency, different groups of filters for different regions
are applied for the whole input 𝐹𝑜𝑢𝑡𝑠 to get the dynamic features,
then the dynamic features are multiplied by the generated dynamic
region masks. Finally, a summation is applied to obtain the final
results for the region-level dynamic components as

𝐹𝑜𝑢𝑡𝑅 =
∑
𝑖

𝐹 𝑖𝑅 ⊗ 𝑀𝑖
𝑑𝑐𝑝

=
∑
𝑖

(𝐹𝑜𝑢𝑡𝑠 ⊙𝑊𝑖 ) ⊗ 𝑀𝑖
𝑑𝑐𝑝 (6)

where 𝐹 𝑖
𝑅
is the 𝑖𝑡ℎ feature map calculated by the filters𝑊𝑖 ,𝑀𝑖

𝑑𝑐𝑝
is

the generated DCP-guided region masks, ⊗ denotes the pixel-wise
multiplications and ⊙ denotes the convolutional operations. Thus
the network splits into two branches for the mask generation and
corresponding filter generations as Fig.2.

The components of hierarchical dynamics are not limited to
the proposed components and could evolve as the development
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(a)Input (b) Drconv-mask (c) DCP-mask

Figure 3: A visual comparison of DCP-guidedmasks and the
learned masks by DRconv [5]

of the dynamic models. The existing techniques such as [5] could
be also inserted into our framework. Nevertheless, the proposed
DCP-guided mask generation is independent of the corresponding
dynamic feature learning process of certain regions, which leads
to a faster and better feature learning process compared with our
hierarchical dynamic mechanisms equipped with Dynamic Region-
aware convolutions [5] denoted as HDM-F.

3.4 DCP Priors for Image Dehazing
DCP priors directly relate to the transmission map for image dehaz-
ing problem. Light attenuates in propagation and the transmission
𝑡 (𝑥) decays exponentially in the medium with the scene distance
or depth 𝑑 (𝑥),

𝑡 (𝑥) = 𝑒−𝛽𝑑 (𝑥) , (7)

where 𝑥 indicates the location of the pixel in the image, 𝛽 is a
constant value. Clustering the dark channel values means grouping
the negative exponential space of depth information.

Although Eq. 7 and estimated transmissions by DCP method
may have some biases for the nonhomogeneous hazy images, it
produces a rough prediction of the depth ranges that could be ap-
plied for generating a mask for our dynamic region separations.
The DCP-guided dynamic calculations exploit the inner relation-
ship between depth and dehazing process. Moreover, the depths
are mostly local coherent and the spatial coherence constraints
for dynamic region generations are inherently imposed. In Fig. 3,
visualization comparisons of the DCP-guided masks and learned
masks by [5] for an image are represented. The masks by [5] for the
region generations include some rich features but are dispersive or
sparse, while the proposed DCP-guided masks have a better spatial
coherence and spatial adjacency within each region which could
benefit the following enhancement process.

4 EXPERIMENTS
Our approaches denoted as HDM are evaluated on different image
enhancement tasks of extreme weather or bad illuminations: (a)
image dehazing, (b) image deraining, (c) low-light enhancement.
The evaluated low-quality images mainly include synthetic images
which are generated following the assumed physical models and
real-world images.

Our proposed network is implemented by PyTorch 1.4.0 with one
NVIDIA TITAN xp GPU. The models are trained using an Adam
optimizer with exponential decay rates 𝛽1 and 𝛽2 of 0.9 and 0.999,
respectively. The initial learning rate and batch size are set to 0.0002
and 16, respectively. The cosine annealing strategy is applied to
adjust the learning rate and the total number of iterations is 100
epochs. For the three different types of data, the applied losses are

all weighted combinations of L1 loss and perceptual loss, which
are commonly used in various image enhancement tasks. All the
report PSNR are tested on the RGB color space.

For all the three enhancement tasks, our method achieves the
best performances with a small parameter number, which well
balances performances and complexities. More visual comparisons
and details could be found in the supplementary materials.

4.1 Image Dehazing
For synthetic datasets, the widely applied large-scale benchmark
RESIDE dataset [22] is utilized. Following the common practice,
the subsets of RESIDE, Indoor Training Set (ITS) and Synthetic
Objective Testing Set (SOTS) are used for training and testing re-
spectively. Two most commonly applied real datasets: NH-HAZE
[2] and Dense-Haze [1] are investigated for real applications. Typ-
ical and the state-of-the-art dehazing methods are compared in
Table 1. The compared methods include: traditional method DCP
[14], physical model-driven deep learning method DCPDN [48]
(For a fair comparison, we have finetuned it on the RESIDE dataset)
and end-to-end dehazing method such as AOD [21], GridDehaze
[30], FFA [32],MSBDN [7],KDDN [16] andAECR [41]. Since the
code of FDU [8] is not released, only the metrics reported in their
paper are referenced for comparisons.

Our method outperforms all the compared methods for all the
test datasets. Visual comparisons are given in Fig.4 which proves
our method obtains better visual results for real nonhomogeneous
hazy images. Our method has restored fewer artifacts and correct
color tunes of the image. For example, our result of the tree canopy
in the first picture is more faithful and there are severe color shifts
in the grounds of other restorations except ours.

4.2 Image Deraining
Careful comparisons with 9 state-of-the-art are performed on syn-
thetic benchmarks Rain100L, Rain200H and DID-data in Table 3.
Rain100L and Rain200H are synthesized with one type of light rain
streaks and heavy rain streaks of five streak directions respectively
[42], while DID-data [50] emphasizes different densities of rain and
generates rain streaks with different orientations and scales. In addi-
tion, the real rainy images provided by [31, 39] are evaluated by our
model with the parameters learned from Rain200H. The compared
methods include a traditional method: LP [27], and 8 deep learning-
based methods: DID [49], SPANet [39], UMRL [45], PReNet [33],
MSPFN [18], RCDNet [38], RLNet [4], MPRNet [47].

Our method has achieved better PSNR/SSIM performances and
visual results in all the synthetic data. Our method restores more
texture for the bear in Fig. 5. More importantly, our method works
effectively for the real rainy images, where both rainy and hazy
distortions existed. Our model removes all the rain streaks with less
artifacts in Fig.6. The real hazy images could be sequentially pro-
cessed by our HDMmodels trainedwith Rain200H rainy dataset and
ITS dehazing dataset respectively. With a combination of deraining
and dehazing operations, our method could generate significant
better enhancement results for real rainy images.

4.3 Low-Light Enhancement
The LOL [40] dataset is tested for comparisons which is commonly
used in low-light enhancement tasks. The LOL dataset consists of
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Table 1: Quantitative PSNR / SSIM comparisons on different hazy datasets as well as comparisons of parameter numbers.

DCP AOD-Net DCPDN GridDehaze FFA MSBDN KDDN FDU AECR Ours

SOTS 15.09/0.765 19.82/0.818 25.64/0.927 32.16/0.984 36.39/0.989 33.79/0.984 34.72/0.985 32.68/0.976 37.09/0.990 38.56/0.991

NH-HAZE 10.57/0.520 15.40/0.569 14.55/0.601 13.80/0.537 19.87/0.692 19.23/0.706 17.39/0.590 -/- 19.88/0.717 22.48/0.737

Dense-Haze 10.06/0.386 13.14/0.414 12.71/0.342 13.31/0.368 14.39/0.452 15.37/0.486 14.28/0.407 -/- 15.80/0.466 15.97/0.507

Params(Mb) - 0.002 66.89 0.96 4.68 31.35 5.99 - 2.61 2.32

Table 2: Quantitative PSNR / SSIM comparisons on different rainy datasets as well as comparisons of parameter numbers.

LP DID SPANet UMRL PReNet MSPFN RCDNet RLNet MPRNet Ours

Rain100L 29.11/0.881 23.79/0.773 27.85/0.881 32.39/0.921 36.28/0.979 33.50/0.948 38.60/0.983 37.38/0.980 34.95/0.960 38.94/0.983

Rain200H 14.26/0.420 15.54/0.520 13.27/0.412 23.01/0.744 27.64/0.884 24.30/0.748 28.83/0.886 28.87/0.895 27.63/0.874 29.93/0.898

DID-data 22.46/0.801 27.93/0.861 22.96/0.720 30.05/0.891 30.40/0.891 30.34/0.881 29.81/0.859 32.62/0.917 31.29/0.894 32.91/0.919

Params(Mb) - 0.37 0.28 0.98 0.17 3.17 13.22 4.73 20.15 2.32

Table 3: Quantitative PSNR / SSIM comparisons on LOL dataset and Quantitative NIQE comparisons on unlabeled low-light
dataset as well as comparisons of parameter numbers.

LIME RetinexNet KinD Zero-Dce EnlightenGAN RUAS KindD++ Zero-Dce++ MIRnet Ours

LOL( PSNR 14.92 13.10 20.87 15.51 15.64 18.23 21.30 15.35 24.14 23.45
SSIM) 0.516 0.429 0.810 0.553 0.578 0.717 0.823 0.570 0.83 0.852

Params(Mb) - 0.84 8.54 0.08 8.64 0.01 8.28 0.09 31.79 2.32

DICM(NIQE) 3.5347 4.4654 4.1383 3.5602 3.5458 5.2103 3.7860 3.5391 3.5642 3.5328

LIME(NIQE) 3.5593 3.6927 3.7111 3.3350 3.4895 3.9603 3.4936 3.5430 3.8161 3.4692

Darkface(NIQE) 3.6245 4.6648 4.1061 3.3723 3.1047 4.3489 3.1902 3.3578 3.2966 2.9255

500 pairs of images captured in real scenes and each pair contains
a low-light image and the corresponding normal-light image. To
investigate the generalization ability of themodel, themodel trained
from the LOL dataset is also evaluated on three unlabeled datasets,
i.e., LIME[12], DICM[20], Darkface[44].

For low-light enhancement task, our method is compared with
8 state-of-the-art methods, which includes 1 traditional method:
LIME[12], and 7 deep learning-based methods: RetinexNet[40],
KinD[52],Zero-DCE[11],EnlightenGAN[19],DRBN[43],RUAS
[29], MIRnet [46] and Zero-DCE++[51].

Our method obtain the best performances in LOL [40] dataset
and obtains better or comparable no-reference image quality assess-
ment index NIQE in three unlabeled datasets. Ourmethod especially
works well for the largest real-world low-light image dataset Dark-
face. In Fig. 7, our results appear lighter but keep the details of the
original images. The pulled wires in the sky of the second picture
in Fig.7 can be seen clearly while other methods may lose these
details or introduce artifacts.

4.4 Ablation Study
4.4.1 The importance of local to global philosophy. The cascade
order of the dynamic components for the hierarchical dynamic
mechanisms largely affects the performances as shown in Table 4
which demonstrates the importance of local to global philosophy.

Blind combinations of different techniques could largely degrade
the performances.

Table 4: The comparisons of different cascaded orders for
different dynamic components on NH-HAZE dataset, P,S,R
indicate the channel-spatial-level, structure-level, region-
level dynamic components respectively.

NH-HAZE PSR(Ours) PRS SRP SPR RPS RSP AECR

PSNR (dB) 22.48 15.12 11.44 18.84 17.23 11.55 19.88

4.4.2 Architectures with different hierarchical dynamic deep compo-
nents. The influences of abandoning some dynamic deep compo-
nents on performances and parameter numbers are investigated in
Table 5. The performances of five architectures are compared on
RESIDE and NH-HAZE datasets. The five architectures are (a) B:
baselinemodel that only encoder-decoder structures are applied and
no dynamic components are utilized, (b) B+FA: channel and spatial
attentions are applied in addition to the baseline model, (c) B+FA+S:
deformable convolutions are applied in addition to the setting (b) to
further obtain structure-level dynamics, (d)HDM-F: models follow-
ing our hierarchical dynamic mechanism but with the learned mask
by [5].(e) HDM: models following our DCP-guided hierarchical
dynamic mechanism. The performances are constantly improved
as more components of the hierarchical dynamics are constructed.
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PSNR / SSIM 18.57 / 0.7589 11.46 / 0.5569 19.36 / 0.7739 18.29 / 0.6865 21.36 / 0.7891
Input MSBDN [7] GridDehazeNet [30] FFA [32] AECR [41] HDM(ours) GT

PSNR / SSIM 16.25 / 0.6431 12.11 / 0.4812 13.79 / 0.7005 16.35 / 0.6779 24.46 / 0.7296
Input MSBDN [7] GridDehazeNet [30] FFA [32] AECR [41] HDM(ours) GT

Figure 4: Visual comparisons of different methods for the real nonhomogeneous hazy images.

PSNR / SSIM 20.16 / 0.7112 28.32 / 0.8710 34.97 / 0.9295 32.17 / 0.9110 35.10 / 0.9315 30.12 / 0.9011 35.36 / 0.9415
Input DID [49] UMRL [45] PreNet [33] MSPFN [18] RCD [38] MPRNet [47] HDM(ours) GT

Figure 5: Visual comparisons of different methods for Rain200H

Input DID [49] MSPFN [18] RCD [38] MPRNet [47] HDM HDM(Deraining) + HDM(Dehazing))

Figure 6: Visual comparisons of different methods for Real rainy images from Internet provided by [39]

Input RetinexNet [40] EnlightenGAN [19] RUAS [29] Kind++ [51] Zero-DCE++ [24] HDM

Figure 7: Visual comparisons of different methods for Real dark images

Although adding dynamic deep components increases the parame-
ter number of the model, the performances are largely boosted. The
major growth of parameter numbers for the hierarchical dynamic
deep components comes from the channel-spatial-level dynamic
components but is still acceptable. The channel-spatial-level dy-
namics enable local varied representation for each pixel.Parameter

numbers are only slightly increased when the structure-level and
the region-level dynamic components are further added, but sig-
nificant performance gains have been achieved. Table 5 proves the
effectiveness of the proposed hierarchical dynamic mechanism.

In Fig. 8, our hierarchical dynamic mechanism gradually im-
proves the enhancements as channel-spatial-level, structure-level,
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Table 5: The comparisons of PSNR / SSIM and parameter
numbers (Mb) of architectures with different hierarchical
dynamic deep components.

SOTS NH-HAZE Parms

a) B 28.74/0.9631 14.78/0.6064 0.49
b) B+FA 33.53/0.9812 16.46/0.6089 2.19
c) B+FA+S 36.19/0.9849 16.62/0.6268 2.24
d) HDM-F 37.57/0.9902 20.77/0.7267 2.37
e) HDM 38.56/0.9909 22.48/0.7373 2.32

Table 6: PSNR/SSIM comparisons of different region genera-
tion manners.

GT-Depth Predicted Depth DRconv[5] DCP(Ours)

SOTS 38.53/0.9908 36.11/0.9811 37.57/0.9902 38.56/0.9909
NH-HAZE -/- 9.43/0.2579 20.77/0.7267 22.48/0.7373

region-level dynamic components are added. Applying Our DCP-
guided dynamic region generation method further gets rid of the
thick haze in the distant placesmarked by the red rectangles.Compared
with images (b) in Fig. 8, structure-level dynamic components en-
hance some textures of the enhancements such as the top of the slide.
Applying the feature-guided region dynamic component (HDM-F)
further captures some general characteristics of the restoration,
for example, the color shifts in (d) of Fig. 8 are largely reduced
compared with (b) and (c), but some minor shifts still exist. Finally,
the DCP-guided dynamic component improves the restorations
in distant places such as the background marked by the red rec-
tangle, benefiting from exploiting the inner-relationship between
image dehazing and depth information. The color shifts are further
reduced such as the image area of the yellow gym equipment.

4.4.3 The impact of different region generation manners. How to
generate regions is the key factor of the region-level dynamics. In
this section, for image dehazing task, dynamic region masks gener-
ated by groundtruth depth information, by depth predictions of a
pretrained depth estimation model for clear images, by Dynamic
Region-aware convolutions [5] and by DCP priors are compared in
Table 6. It is clear that the depth information is really helpful to the
region generations for image dehazing task. Our proposed DCP-
guided region generations perform much better than the learned
region generations by [5]. As shown by Fig. 3, although both masks
capture some meaningful features, our DCP-guided generated re-
gions are spatial continues and keep better spatial adjacency within
the regions while learned masks by DRconv [5] are quite dispersive
and sparse. Inaccurate depth predictions would be harmful to the
region generations and final performances.

4.4.4 The influence of the region mask number . The numbers of the
DCP-guided region masks applied in our paper are 5. The numbers
of region masks affect the performances as the number relates to
the granularity of the region separations and the coherence within
each region. Too coarse separations can not describe the uneven
distributions of the degraded images. Too fine separations would
fail to preserve the global information and also lead to heavier com-
putational burdens. The variations of PSNR for NH-Haze dataset vs.

(a)Input (b) B+FA

(c) B+FA+S (d) HDM-F

(e) HDM-DCP (Ours) (f)GT

Figure 8: Visual comparisons of enhancements by deep ar-
chitectures with different dynamic components for the ab-
lation study of the hierarchical dynamic mechanism.

region mask number is represented in the supplementary materials.

5 CONCLUSION
In this paper, we propose a DCP-guided hierarchical dynamic mech-
anism from local to global that gradually builds channel-spatial-
level, structure-level, and region-level dynamics. DCP-guided region-
level dynamics, which measure the discrepancy between degrada-
tion images and images of ideal image qualities, could implicitly
impose spatial coherency constraints inherently for better feature
representations and keep spatial adjacency within regions. Our
algorithm achieves state-of-the-art performances and restores vi-
sually pleasing results for image dehazing, image deraining and
low-light image enhancement tasks with a small parameter number.
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